Uncovering the mechanisms of wound healing and fibrosis
Legal disclaimers

- **RT² Profiler PCR Arrays and Assays** are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease.

- For up-to-date licensing information and product-specific disclaimers, please see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.QIAGEN.com, or can be requested from QIAGEN Technical Services or your local distributor.
Background: process of wound healing

Wound healing — a 4-step process

Step 1: Hemostasis (clotting)
- Vasoconstriction
- Coagulation cascade is initiated by interaction of coagulation factor FVII with TF
- Von Willebrand factor helps platelets bind at wound sites, where they activate and degranulate

Step 2: Inflammation
- Enhanced blood vessel permeability due to release of histamine and other factors
- Inflammatory cells infiltrate (PMN, macrophages) and kill any microbes accompanying the injury
- Leukocytes produce cytokines, chemokines, and growth factors, some of which (IL-1beta, TGF-beta, TNF) recruit fibroblasts

Step 3: Proliferative phase
- Fibroblasts are recruited and activated, and secrete ECM components (type III collagen, fibronectin)
- Formation of granulation tissue (fibroblasts, inflammatory cells, new blood vessels, fibronectin, hyaluronan, collagen, endothelial cells)
- Epithelialization

Step 4: Wound closing/tissue remodeling
- Wound contraction via myofibroblasts at the edges
- Type III collagen is replaced by Type I, and fibers are rearranged and crosslinked.
- Remodeling will continue for weeks to months.
Backgrounds: wound healing and fibrosis

Uncontrolled wound healing response results in fibrosis

Fibrosis develops if any stage in the tissue repair program is dysregulated.

- Chronic inflammation
- The tissue-damaging agent is not removed
- The repair process is not regulated properly

Review, Integrating mechanisms of pulmonary fibrosis. JEM Vol. 208, No. 7
Background: Key components of wound healing/fibrosis

Cells/cell fragments:
- Epithelial and endothelial cells
- Platelets
- Fibroblasts / Myofibroblasts
- Inflammatory cells (macrophages, neutrophils)

Proteins:
- ECM components (Collagens, fibronectin, etc.)
- Proteases (MMPs, collagenase)
- Growth factors (TGF-beta, PDGF)
- Inflammatory mediators (histamine)
- Cytokines (TNF-alpha, IL-1-beta)
- Intracellular signaling pathways (NFkappaB, JAK/STAT, more)
Fibrosis affects a wide range of tissues, including:

- Lungs (idiopathic pulmonary fibrosis, cystic fibrosis)
- Heart (post-myocardial infarction, endomyocardial fibrosis)
- Liver (cirrhosis)
- Skin (Scleroderma, nephrogenic systemic fibrosis)
- Joints (arthrofibrosis)
- Kidney (renal fibrosis)
Background: Fibrosis and diseases

Cardiac fibrosis

- Can occur in response to left ventricular pressure-overload, as “reactive interstitial fibrosis”, which leads to cardiac hypertrophy and necrosis
- Alternatively, “replacement fibrosis” could occur in response to myocardial infarction, inflammation, and myocyte death.

Systemic scleroderma - skin

- Autoimmune disease of the skin and, in some cases, the internal organs
- Arteriole endothelial and smooth muscle cell apoptosis, followed by inflammation and fibrosis
- Cause is unknown, but skin fibrosis can be treated

Liver cirrhosis

- Develops as a result of chronic liver disease (alcoholic, fatty liver disease, autoimmune disease, or hepatitis virus, etc.), or idiopathic
Background: Fibrosis and diseases

Pulmonary fibrosis

- Idiopathic (possibly linked to Surfactant protein C mutation) or as a result of injury or disease, including:
 - Inhalation of particulates and gases
 - Smoking
 - Infections
 - Drugs (bleomycin, amiodarone, etc.)
- Involvement by inflammatory mediators such as TNF, IL-beta, and IL-17, has been implicated, as well as Th2 cytokines such as IL-13 and IL-4

Review, Integrating mechanisms of pulmonary fibrosis. JEM Vol. 208, No. 7
Pulmonary fibrosis: role of T helper cells and macrophages

Review, Integrating mechanisms of pulmonary fibrosis. JEM Vol. 208, No. 7
Scleroderma and cytokines

Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. Nakashima, T. et al. (2012) Journal of Immunology

Used RT² Profiler PCR Array for Human Extracellular Matrix and Adhesion Molecules

SOCS3 and myocardial infarction

Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. Oba, T. et al. (2012) Journal of the American College of Cardiology

Used RT² Profiler PCR Array for Mouse Common Cytokines

Matrix metalloproteinases and LV remodeling

Used a Custom RT2 Profiler PCR Array.
RT² Profiler PCR Arrays

Pathway-focused gene expression profiling

- 84 (or 370) real-time PCR assays for genes related to specific pathways
- Gene lists chosen by our experts – bioinformatics and text mining
- Each assay is wet-lab tested for specificity and sensitivity
- More than 140 pathways available, including many for fibrosis-related processes
- Integrated controls for normalization, reverse transcription, genomic DNA contamination, and the PCR process, plus free data analysis tools

PCR Array Overview, Nov 15, 9:30am
https://www2.gotomeeting.com/register/263258378
RT² Profiler PCR Arrays for fibrosis and wound healing

Fibrosis (for Human, Rat, Mouse, Rabbit, and more)

Pro-Fibrotic: ACTA2 (a-SMA), AGT, CCL11 (Eotaxin), CCL2 (MCP-1), CCL3 (MIP-1a), CTGF, GREM1, IL13, IL13RA2, IL4, IL5, SNAI1 (Snail).

Anti-Fibrotic: BMP7, HGF, IFNG, IL10, IL13RA2.

Extracellular Matrix & Cell Adhesion:
ECM Components: COL1A2, COL3A1.
Remodeling Enzymes: LOX, MMP1 (Collagenase 1), MMP13, MMP14, MMP2 (Gelatinase A), MMP3, MMP8, MMP9 (Gelatinase B), PLAT (TPA), PLAU (uPA), PLG, SERPINA1 (a1-antitrypsin), SERPINE1 (PAI-1), SERPINH1, TIMP1, TIMP2, TIMP3, TIMP4.
Cellular Adhesion: ITGA1, ITGA2, ITGA3, ITGAV, ITGB1, ITGB3, ITGB5, ITGB6, ITGB8.

Inflammatory Cytokines & Chemokines: CCL11 (Eotaxin), CCL2 (MCP-1), CCL3 (MIP-1a), CCR2, CXCR4, IFNG, IL10, IL13, IL13RA2, IL1A, IL1B, IL4, IL5, ILK, TNF.

Growth Factors: AGT, CTGF, EDN1, EGF, HGF, PDGFA, PDGFB, VEGFA.

Signal Transduction:
TGFB Superfamily: BMP7, CAV1, DCN, ENG (EVI-1), GREM1, INHBE, LTBP1, SMAD2, SMAD3, SMAD4, SMAD6, SMAD7, TGFβ1, TGFβ2, TGFβ3, TGFβ1 (ALK5), TGFβ2, TGFβ3, THBS1, THBS2
Transcription Factors: CEBPB, JUN, MYC, NFKB1, SP1, STAT1, STAT6

Epithelial-to-Mesenchymal Transition: AKT1, BMP7, COL1A2, COL3A1, ILK, ITGAV, ITGB1, MMP2 (Gelatinase A), MMP3, MMP9, SERPINE1 (PAI-1), SMAD2, SNAI1 (Snail), TGFβ1, TGFβ2, TGFβ3, TIMP1.

Others: BCL2, FASLG (TNFSF6).
RT² Profiler PCR Arrays for fibrosis and wound healing

Wound healing (for Human, Mouse, Rat, Pig, Rabbit, and more)
http://sabiosciences.com/rt_pcr_product/HTML/PAHS-121Z.html

Extracellular Matrix & Cell Adhesion:
ECM Components: COL1A1, COL1A2, COL2A1, COL3A1, COL4A1, COL4A3, COL5A1, COL5A2, COL5A3, VTN.
Remodeling Enzymes: CTSG, CTSS, CTSL2, F13A1, F3 (Tissue Factor), FGA (Fibrinogen), MMP1, MMP2, MMP7,
MMP9, PLAT (tPA), PLAU (uPA), PLAUR (uPAR), PLG, SERPINE1 (PAI-1), TIMP1.
Cellular Adhesion: CDH1 (E-cadherin), ITGA1, ITGA2, ITGA3, ITGA4, ITGA5, ITGA6, ITGAV, ITGB1, ITGB3,
ITGB5, ITGB6.
Cytoskeleton: ACTA2 (a-SMA), ACTC1, RAC1, RHOA, TAGLN.

Inflammatory Cytokines & Chemokines: CCL2 (MCP-1), CCL7 (MCP-3), CD40LG (TNFSF5), CXCL1, CXCL11 (ITAC/IP-9), CXCL2, CXCL5 (ENA-78/LIX), IFNG, IL10, IL1B, IL2, IL4, IL6.

Growth Factors: ANGPT1, CSF2 (GM-CSF), CSF3 (GCSF), CTGF, EGF, FGF10, FGF2, FGF7, HBEGF (DTR),
HGF, IGF1, MIF, PDGFA, TGFA, TGFβ1, TGFβ3, VEGFA.

Signal Transduction:
TGFβ: TGFβ1, TGFβR3, STAT3.
WNT: CTNNB1, WISP1, WNT5A.
Phosphorylation: MAPK1 (ERK2), MAPK3 (ERK1), PTEN.
Receptors: EGFR, IL6ST (GP130).
Other: PTGS2.
RT² Profiler PCR Arrays for fibrosis and wound healing

ECM & Adhesion Molecules (for Human, Mouse, Rat)
RT² Profiler PCR Arrays for fibrosis and wound healing

Additional pathways available

Common Cytokines
Inflammatory Cytokines & Receptors
TGF-beta Signaling Pathway
TGF-beta Signaling Targets
Endothelial Cell Biology
Epithelial-to-Mesenchymal Transition

For complete list, see http://www.sabiosciences.com/ArrayList.php

Other species and custom array

<table>
<thead>
<tr>
<th>Human (Homo sapiens)</th>
<th>Cow (Bos taurus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse (Mus musculus)</td>
<td>Chicken (Gallus gallus)</td>
</tr>
<tr>
<td>Rat (Rattus norvegicus)</td>
<td>Horse (Equus ferus caballus)</td>
</tr>
<tr>
<td>Fruitfly (Drosophila melanogaster)</td>
<td>Zebrafish (Danio rerio)</td>
</tr>
<tr>
<td>Dog (Canis lupus familiaris)</td>
<td>Chinese Hamster: CHO (Cricetulus griseus)</td>
</tr>
<tr>
<td>Pig (Sus scrofa)</td>
<td>Rabbit (Oryctolagus cuniculus)</td>
</tr>
<tr>
<td>Rhesus macaque (Macaca mulatta)*</td>
<td></td>
</tr>
<tr>
<td>*Compatible with: Crab-eating macaque (Macaca fascicularis) (Cynomolgus monkey)</td>
<td></td>
</tr>
</tbody>
</table>
An application example using RT² Profiler PCR Arrays

Cytokine expression changes in human PBMC on PMA/ionomycin treatment.

Plot and Chart Format:
- Heat Map
- Scatter Plot
- Volcano Plot
- Clustergram
- Multigroup Plot
Researching the causes of fibrosis

Scleroderma and cytokines

Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. Nakashima, T. et al. (2012) Journal of Immunology

Used RT² Profiler PCR Array for Human Extracellular Matrix and Adhesion Molecules

SOCS3 and myocardial infarction

Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. Oba, T. et al. (2012) Journal of the American College of Cardiology

Used RT² Profiler PCR Array for Mouse Common Cytokines

Matrix metalloproteinases and LV remodeling

Used a Custom RT2 Profiler PCR Array.
Application 1: Fibroblast collagen production and IL-17

Background and research question

- Fibroblasts from SSc patients show intrinsic TGF-beta1 activation, and other cytokines are also implicated in disease progression.

- Previous studies yielded conflicting reports on the association of IL-17 with SSc, and the authors sought to clarify its involvement.

- Are IL-17A&F and IL-17RA expressed differently in SSc vs. healthy subjects?

- Is IL-17 involved in regulating ECM during SSc?

Application 1: Fibroblast collagen production and IL-17

Approach

- Cytokines and receptors were measured in serum, fibroblast cultures, and tissue samples by ELISA, immunoblotting, and immunohistochemistry.

- An RT² Profiler PCR Array for Human Extracellular Matrix and Adhesion Molecules was used to profile ECM gene expression.

- An RT² miRNA PCR Array was used to profile miRNA expression.

- siRNA against TGF-beta1, Smad3, and IL-17RA were used to assess the effects of TGF-beta signaling on IL-17 receptor expression and IL-17 signaling on miR-129-5p expression, respectively.
IL-17A levels were higher in sera and involved skin of SSc patients, and IL-17RA was lower at both the protein and mRNA level in cultured fibroblasts. This was rescued by siRNA for TGF-beta1 or Smad knockdown.

The RT²Profiler PCR Array showed that IL-17A treatment caused downregulation of pro-fibrotic CTGF. Alpha1(I) collagen expression remained the same, but was lower by immunoblotting.

An RT² miRNA PCR Array showed that miR-129-5p (among others) was downregulated in SSc fibroblasts.

Application 2: SOCS3 and myocardial infarction

Scleroderma and cytokines

Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. Nakashima, T. et al. (2012) Journal of Immunology

Used RT² Profiler PCR Array for Human Extracellular Matrix and Adhesion Molecules

SOCS3 and myocardial infarction

Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. Oba, T. et al. (2012) Journal of the American College of Cardiology

Used RT² Profiler PCR Array for Mouse Common Cytokines

Matrix metalloproteinases and LV remodeling

Used a Custom RT2 Profiler PCR Array.
Left ventricular remodeling after acute myocardial infarction (AMI), including fibrosis, contributes to heart failure.

Previous work had shown that cytokines activating the JAK/STAT pathways could prevent LV remodeling in animal models after AMI.

SOCS3 acts in a negative feedback loop induced by JAK/STAT-activating cytokines – could inhibition of SOCS3 prevent LV remodeling?

Application 2: SOCS3 and myocardial infarction

Approach

- Made cardiac-specific SOCS3 knockout mice, induced AMI, and observed LV remodeling in knockouts vs wild-types

- Performed western blot analysis, TUNEL staining for apoptosis, echocardiograph, and real-time PCR

- Used Mouse Common Cytokines RT2 Profiler PCR Array to profile cytokines in the system
Application 2: SOCS3 and LV remodeling

Major findings

- Survival was enhanced in SOCS3 knockouts after AMI induced by coronary ligation – 100% survived to 14 days, compared to 55% of controls.

- LV remodeling was diminished in knockouts, as was apoptosis.

- RT² Profiler PCR Array showed expression of multiple JAK-STAT-activating cytokines following AMI, and many were diminished in SOCS3 knockouts (including G-CSF, IL-11, and IL-6).

- Western blot showed greater activation of STAT3, AKT, and ERK pathways in knockouts.

- Mallory-AZAN staining showed smaller fibrotic areas in knockout hearts, and MMPs, TGF-beta2, and collagen showed lower expression as well.

Conclusions

Cardiomyocyte SOCS3 may drive fibrosis development/LV remodeling following AMI, and may be a useful therapeutic target.

Application 3: MT1-MMP, LV remodeling, and fibrosis

Fibrosis research with RT² Profiler PCR Arrays

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scleroderma and cytokines</td>
<td>Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. Nakashima, T. et al. (2012) Journal of Immunology</td>
</tr>
</tbody>
</table>

| **SOCS3 and myocardial infarction** | Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. Oba, T. et al. (2012) Journal of the American College of Cardiology |

Used RT² Profiler PCR Arrays
- **Scleroderma and cytokines**: Used RT² Profiler PCR Array for Human Extracellular Matrix and Adhesion Molecules
- **SOCS3 and myocardial infarction**: Used RT² Profiler PCR Array for Mouse Common Cytokines
- **Matrix metalloproteinases and LV remodeling**: Used a Custom RT2 Profiler PCR Array.
Myocardial fibrosis develops during chronic pressure-overload (PO), which causes LV hypertrophy.

Membrane type I MMP (MT1-MMP) is implicated in fibrosis development, and its transcription is enhanced by mechanical forces.

Could mechanical forces from chronic PO increase MT1-MMP expression and fibrosis?
Application 3: MT1-MMP, LV remodeling, and fibrosis

Approach

- Developed an MT1-MMP promoter reporter mouse and used transverse aortic constriction to model PO
- Used a Custom RT² Profiler PCR Array for MT1-MMP, procollagen type I, CTGF, TGF-betaR1, and other profibrotic genes in myocardial samples
- Measured LV by echocardiography and collagen by light microscopy
- Isolated papillary muscles from reporter mice and subjected to stimulation, then observed expression of MT1-MMP as well as transcription factors

Application 3: MT1-MMP, LV remodeling, and fibrosis

Major findings

- PO led to LV hypertrophy and collagen volume fraction increase.

- MT1-MMP protein abundance increased over the course of 4 weeks after PO, and MT1-MMP promoter activity increased at 1 and 4 weeks, with a dip at week 2.

- The RT² Profiler PCR Array showed increases in various profibrotic genes, including the TGF-beta receptor, collagens, serine protease inhibitors, LTBP, and CTGF, one week following PO.

- Increases in mechanical load led to strong increases in MT1-MMP expression in isolated papillary muscles, as well as expression of transcription factors including NFkappB, RELA, and c-Fos.

Conclusions

Mechanical forces during PO may activate MT1-MMP transcription via NFkappaB or c-Fos, exacerbating fibrosis through TGF-beta signaling. The temporal associations in this study suggest that further research into MT1-MMP as a driver of LV remodeling is warranted.
RT² Profiler PCR Arrays for fibrosis research

Interested in trying RT² Profiler PCR Arrays?

Visit us at www.sabiosciences.com/rt_pcr_product to learn more!

Call 1-888-503-3187 for more information

Email: support@SABiosciences.com (US & Canada)
sabio@qiagen.com (International customer)