Microbiome: From identification to characterization
• QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease.

• For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.QIAGEN.com or can be requested from QIAGEN Technical Services or your local distributor.
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome
- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics
- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations
- Identify and profile relevant targets
 - How to design assays for the microbiome
- Integrating focused metagenomics into my research
 - Solutions for identification or profiling
- Summary
 - Identification to Characterization
- Questions
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome
- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics
- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations
- Identify and profile relevant targets
 - How to design assays for the microbiome
- Integrating focused metagenomics into my research
 - Solutions for identification or profiling
- Summary
 - Identification to Characterization
- Questions
Humans or Superorganisms?

Cellular composition of the organism

Estimations of the number of microbial cells that live in and on the human body, human cells are outnumbered by a factor of 10.

Nomenclature:

Microbiota are the microbes that live in a specific location, e.g. the human body, the gut, soil, etc.

Metagenomics is the study of the collection of genomes derived from a specific sample or community.

Microbes are microscopic organisms that can be either single or multicellular.

For the purposes of this webinar, we will use *microbiome* to describe the collective genomes of the microbiota that inhabit a specific location.
Microbiota composition

Cataloguing efforts by the NIH Human microbiome project suggest:

~10,000 organisms live with us

~ 8×10^6 genes in this “second genome”

Identifying microbiota in healthy individuals revealed:

Different body sites have unique communities

Race, Age, Gender, Weight or Ethnicity have no effect
Function of microbiome enables individual survival

Each organism has developed genetic content for its own survival in a specific environment.

- Metabolism tuned to local nutrient sources
- Virulence factors for stable colonization
- Antibiotic resistance genes to metabolize toxins
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome

- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics

- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations

- Identify and profile relevant targets
 - How to design assays for the microbiome

- Integrating focused metagenomics into my research
 - Solutions for identification or profiling

- Summary
 - Identification to Characterization

- Questions
Identifying microbes and their genes

- **Culture**
 - Nutrients
 - Antibiotics

- **16S rRNA gene clone library construction**
 - Pan 16S rRNA PCR amplification → cloned → sequenced

- **Microarray**

- **Next generation sequencing**
 - 16S rRNA sequencing
 - Whole genome sequencing

- **MALDI**

- **qPCR**
 - Target dependent (16S rRNA or gene)
16S rRNA gene as a phylogenetic marker for bacterial ID

- Conserved region
- Variable region

Classification from the variable sequences

- 16s rRNA sequence similarity

95% genus level, **97% species level**, 99% strain level
How did we get started?

First report of the composition of human body site...

Metagenomic Analysis of the Human Distal Gut Microbiome

If we can do one....can we do them all....
International efforts to catalog the microbiome
Catalog by five primary body sites

NIH Human Microbiome Project

Profiling 5 body sites
- Nasal
- Mouth
- Skin
- Gastrointestinal system
- Urogenital

Compare between individuals:
- Healthy vs. Disease
- Treated vs. Untreated
- Twin studies
- Diet
- ...
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome
- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics
- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations
- Identify and profile relevant targets
 - How to design assays for the microbiome
- Integrating focused metagenomics into my research
 - Solutions for identification or profiling
- Summary
 - Identification to Characterization
- Questions
Association of the human microbiota and disease

- **Gut**
 - Intestinal infections
 - Obesity
 - Inflammatory Bowel Disease
- **Airway**
 - Pneumonia and other respiratory infections
 - Chronic Obstructive Pulmonary Disease
 - Cystic Fibrosis
- **Urogenital**
 - Bacterial Vaginosis
 - Urinary Tract Infections
 - Sexually Transmitted Disease
- **Blood**
 - Sepsis/Blood-stream infections
- **Cancer**
- **Heart disease**
- **Neurological disorders**
- **Oral**
 - Periodontitis
 - Gingivitis
Physiological associations lead to new funding

NIH funding across institutes for microbiome-related studies

2008

2013
Examples from the next wave of microbiome experiments

Screening for microbial genes in a specific metagenomic sample
 Experiment 1: Antibiotic resistance genes in the human gut

Relationships between microorganisms that permit colonization
 Experiment 2: Profile changes in vaginal flora during bacterial vaginosis

Surveillance of samples for specific targets
 Experiment 3: Screen samples for specific pathogens, resistance genes or virulence factors
Screening of the gut for presence of antibiotic resistance genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Resistance classification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacC2</td>
<td>Aminoglycoside resistance</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ermB</td>
<td>Macrolide lincosamide streptogramin B</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>mefA</td>
<td>Macrolide lincosamide streptogramin B</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>tetA</td>
<td>Tetracycline efflux pump</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

500 ng of genomic DNA from stool samples originating from five healthy adults were analyzed for presence of antibiotic resistance genes. 87 unique antibiotic resistance genes were tested for by qPCR. Positive (+) / negative (blank) result for each antibiotic resistance gene was determined using a threshold cycle cutoff.
Identification of microbes in bacterial vaginosis

<table>
<thead>
<tr>
<th>Species/BD Affirm™ test results</th>
<th>BV neg.</th>
<th>BV neg.</th>
<th>BV neg.</th>
<th>Candida</th>
<th>Candida</th>
<th>Candida</th>
<th>GV</th>
<th>GV</th>
<th>GV</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerococcus christensenii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerococcus hydrogenalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerococcus prevotii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopobium vaginae</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifidobacterium longum</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida glabrata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium sordellii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium aurimucosum</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finegoldia magna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Lactobacillus crispatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus gasseri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus iners</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus jensenii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus vaginalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptotrichia amnionii (Sneathia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycoplasma hominis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvimonas micra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptostreptococcus asaccharolyticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptostreptococcus anaerobius</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyromonas asaccharolytica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevotella bivia</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevotella disiens</td>
<td></td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sneathia sanguinegens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>+/-</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichomonas vaginalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ureaplasma parvum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varibaculum cambiense</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veillonella atypica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BV neg. – bacterial vaginosis negative
Candida – Candida spp.
GV – Gardnerella vaginalis
TV – Trichomonas vaginalis
Cervical flora: Gardnerella vaginalis positive vs. BV negative

Log 10 fold change (test/control)
In samples with high *Gardnerella vaginalis* abundance, there was an increase in co-occurrence of BV-associated microorganisms and decrease in abundance of the normal flora, *Lactobacillus crispatus*.
Antibiotic resistance genes in our food supply?

<table>
<thead>
<tr>
<th>Genes</th>
<th>Resistance classification</th>
<th>Sewage</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacC1</td>
<td>Aminoglycoside resistance</td>
<td>+</td>
</tr>
<tr>
<td>aadA1</td>
<td>Aminoglycoside resistance</td>
<td>+</td>
</tr>
<tr>
<td>GES</td>
<td>Class A beta-lactamase</td>
<td>+</td>
</tr>
<tr>
<td>SHV</td>
<td>Class A beta-lactamase</td>
<td>+/-</td>
</tr>
<tr>
<td>SHV (156G)</td>
<td>Class A beta-lactamase</td>
<td>+/-</td>
</tr>
<tr>
<td>SHV (238G240E)</td>
<td>Class A beta-lactamase</td>
<td>+/-</td>
</tr>
<tr>
<td>TLA-1</td>
<td>Class A beta-lactamase</td>
<td>+</td>
</tr>
<tr>
<td>VEB</td>
<td>Class A beta-lactamase</td>
<td>+</td>
</tr>
<tr>
<td>ACT-1 group</td>
<td>Class C beta-lactamase</td>
<td>+/-</td>
</tr>
<tr>
<td>LAT</td>
<td>Class C beta-lactamase</td>
<td>+/-</td>
</tr>
<tr>
<td>MIR</td>
<td>Class C beta-lactamase</td>
<td>+/-</td>
</tr>
<tr>
<td>MOX</td>
<td>Class C beta-lactamase</td>
<td>+</td>
</tr>
<tr>
<td>OXA-10 group</td>
<td>Class D beta-lactamase</td>
<td>+</td>
</tr>
<tr>
<td>OXA-2 group</td>
<td>Class D beta-lactamase</td>
<td>+</td>
</tr>
<tr>
<td>AAC(6)-Ib-cr</td>
<td>Aminoglycoside resistance</td>
<td>+</td>
</tr>
<tr>
<td>QnrB-5 group</td>
<td>Fluoroquinolone resistance</td>
<td>+</td>
</tr>
<tr>
<td>QnrS</td>
<td>Fluoroquinolone resistance</td>
<td>+</td>
</tr>
<tr>
<td>ermB</td>
<td>Macrolide lincosamide streptogramin B</td>
<td>+</td>
</tr>
<tr>
<td>mefA</td>
<td>Macrolide lincosamide streptogramin B</td>
<td>+</td>
</tr>
<tr>
<td>tetA</td>
<td>Tetracycline efflux pump</td>
<td>+</td>
</tr>
</tbody>
</table>
Common themes in these experiments

How best to carry out these focused metagenomic studies?

- Each case has the user profiling a distinct set of genes or species
- Experiments easily translate to large multi-factor experiments
- Range of sample types
- Quantitative and Qualitative data generation
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome
- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics
- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations
- **Identify and profile relevant targets**
 - How to design assays for the microbiome
- Integrating focused metagenomics into my research
 - Solutions for identification or profiling
- Summary
 - Identification to Characterization
- Questions
Sequencing or Real-time PCR (qPCR)

16S rRNA gene

- Conserved region
- Variable region

<table>
<thead>
<tr>
<th>C1</th>
<th>V1</th>
<th>V2</th>
<th>C2</th>
<th>V3</th>
<th>C3</th>
<th>V4</th>
<th>C4</th>
<th>V5</th>
<th>C5</th>
<th>V6</th>
<th>C6</th>
<th>V7</th>
<th>C7</th>
<th>V8</th>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1542</td>
</tr>
</tbody>
</table>

- Classification from the variable sequences
 - 16s rRNA sequence similarity
 - 95% genus level, **97% species level**, 99% strain level

- Assay design approach
 - use only sequences with taxonomy classified by the GreenGenes taxonomy
 - fairly specific probe + fairly specific primer pair = specific assay
How do hydrolysis probe assay work?

Exonuclease activity of Taq polymerase disrupts FRET by separating reporter from quencher
Performance testing of each assay

Dilution series testing for PCR efficiency and sensitivity
LLOQ versus LOD

Determine sensitivity of a microbial assay

LOD, limit of detection, is the lowest amount of analyte (DNA molecule) in a sample that is able to be distinguished from a sample that contains no analyte.

Often reported as colony forming units.

LLOQ, lower limit of quantitation, is the lowest amount of analyte that can be distinguished from a sample with another amount of analyte.

Often reported as gene copies, since colonies may contain multiple copies of a gene.

LLOQ is especially useful for quantitation because it states the limit at which two samples can be quantified as opposed to simple qualification.
QIAGEN’s Microbial DNA qPCR assay pipeline

Develop an assay pipeline to support microbiome research

Over 500 assays that target species-specific or gene-specific microbial DNA

>300 Bacteria identification assay

8 Fungi identification assay

1 Protist identification assay

87 Antibiotic resistance genes

87 Virulence factor genes
Sensitivity of the Microbial DNA qPCR assays

Lower Limit of Quantitation for all Microbial DNA qPCR assays
Assay performance in a metagenomic background

Spike-in experiments test for specificity in a complex background

\[\Delta C_T \]

\[([\text{metagenomic sample} + \text{synthetic template}] - \text{synthetic template}) \]
Correlate qPCR assay performance with NGS results

Profiles of vaginal flora by qPCR and whole genome sequencing

Sample 1

Sample 2

Sample 3

Sample 4

NGS (relative # reads)

qPCR array (Cₚ)

R² = 0,91353

R² = 0,94401

R² = 0,95715

R² = 0,95554
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome
- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics
- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations
- Identify and profile relevant targets
 - How to design assays for the microbiome
- Integrating focused metagenomics into my research
 - Solutions for identification or profiling
- Summary
 - Identification to Characterization
- Questions
Overview of Experimental Protocol

Focused metagenomic experiments

Test for one gene or organism

- DNA Isolation
- Detection by qPCR
- Data Analysis

Microbial DNA qPCR Assays
Microbial DNA qPCR Assay Kits

Test for 2-6 genes or species

- DNA Isolation
- Detection by qPCR
- Data Analysis

Microbial DNA qPCR Multi-Assay Kits

Test for 24-96 genes or species

- DNA Isolation
- Detection by qPCR
- Data Analysis

Microbial DNA qPCR Arrays
Custom Microbial DNA qPCR Arrays
Isolation of microbial DNA from metagenomic samples

Specialized kits and protocols to match samples

<table>
<thead>
<tr>
<th>Sample Material</th>
<th>DNA Purification Kit</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stool</td>
<td>QIAamp DNA Stool Mini Kit</td>
<td>51504</td>
</tr>
<tr>
<td>Blood</td>
<td>QIAamp UCP PurePathogen Blood Kit</td>
<td>50112</td>
</tr>
<tr>
<td>Cervical swab in transport media</td>
<td>QIAamp MinElute Media Kit</td>
<td>57414</td>
</tr>
<tr>
<td>Blood culture, bronchoalveolar lavage, carious dentine, cervical swab, isolated bacterial colony, sputum, saliva, swabs</td>
<td>QIAamp UCP Pathogen Mini Kit</td>
<td>50214</td>
</tr>
</tbody>
</table>
Assay User Protocol

DNA Isolation ➔ Detection by qPCR ➔ Data Analysis

Set up 4 PCR reactions per sample that include positive and negative controls.

Run real-time PCR to obtain raw Ct values for each assay.

Use analysis software to identify which species/gene are present.
Microbial DNA qPCR Array

Pre-printed assays profile up to 90 different species/genes

PCR plates (either 96-well or 384-well) are pre-printed with primers and probes.

Each numbered well is a separate assay that tests the same sample.

Integrated control assays:
- Host assays detect genomic DNA to test sample collection
- Pan A/C is a pan-fungal assay that detects the presence of fungal 16S rRNA
- PanB1 and PanB2 detect bacterial 16S rRNA to determine bacterial load in the sample
- PPC is a positive PCR control reaction that tests if the PCR reactions failed from PCR inhibitors from the sample, etc.
Different arrays have different number of assays and samples.
Microbial DNA qPCR Arrays

Profile or Identify the presence of microbial DNA with any array

Identification experiment answers the following question:
Are any of these microbes or genes present in the sample?

Must be compared against a known negative sample.

Answers are Yes or No.

Profiling experiment answers the following question:
Have the amounts of any of these microbes or genes changed?

Must be compared against a reference sample.

Answers are fold change.
14 Arrays

- Antibiotic Resistance Genes
- Bacterial Vaginosis
- Biodefense
- Food testing: Dairy
- Food testing: Meat
- Food testing: Poultry
- Food testing: Seafood
- Food testing: Vegetable
- Intestinal infections
- Respiratory Infections
- Sepsis
- Urinary Tract Infections
- Vaginal Flora
- Water Analysis
Identification or Profiling

1. Isolate microbial genomic DNA using QiaAmp kit dependent upon sample.

2. Mix sample DNA with Microbial qPCR mastermix and aliquot into each well of plate. If performing for identification analysis, then run No Template Control sample.

3. Run real-time PCR to obtain raw Ct values for each assay.

4. Use analysis software to generate species profile or species/gene Identification.
Focused metagenomic studies to identify and profile

Vaginal Flora qPCR Array

Antibiotic Resistance Gene qPCR Array
Agenda

- Humans or Superorganisms?
 - Introduction to the microbiome
- Cataloging our “Second Genome”
 - Technologies that unlocked metagenomics
- Microbiota: Biomarkers or Effectors?
 - Population studies and disease associations
- Identify and profile relevant targets
 - How to design assays for the microbiome
- Integrating focused metagenomics into my research
 - Solutions for identification or profiling
- Summary
 - Identification to Characterization
- Questions
Summary

Defined the microbiome and the key role it plays in human health

Discussed the focused metagenomic studies

Introduced the Microbial DNA qPCR assay pipeline
 - Launching in September 2013
Humans or Superorganisms?
- Introduction to the microbiome

Cataloging our “Second Genome”
- Technologies that unlocked metagenomics

Microbiota: Biomarkers or Effectors?
- Population studies and disease associations

Identify and profile relevant targets
- How to design assays for the microbiome

Integrating focused metagenomics into my research
- Solutions for identification or profiling

Summary
- Identification to Characterization

Questions
Questions?

Ask now or contact Technical Support

North America
Telephone: 888-503-3187
Email: support@qiagen.com

Europe
00800-22448000
Email: sab.eu@qiagen.com

Worldwide
Email: support@qiagen.com